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Abstract 

DENSITY DEPENDENCE OF THE SINGLE PARTICLE POTENTIAL 
IN NUCLEAR MATTER 

J. Boguta 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

LBL-12628 

The single particle potential in infinite nuclear matter is computed 

as a function of density and energy in a variety of relativistic mean 

field models of nuclear matter. A comparison of this potential is made 

with that computed by Friedman and Pandharipande using the variational 

method. We also show that the self-consistent mean field Hartree 

approximation satisfies the Hugenholtz-van Hove theorem. High density 

behavior of the single particle potential is considered. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract W-7405-ENG-48. 
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A relativistic quantum field approach to the study of infinite 

nuclear matter and finite nuclei is a natural idea to pursue. On the 

basis of such an approach Teller, Duerr and Johnson 1) were able to make 

reasonable predictions for spin-orbit splitting in finite nuclei, the well 

depth of the real part of the optical potential and also its energy 

dependence. These seemingly unrelated quantities are in fact simple 

consequences of the Dirac equation for the nucleons, solved in the 

presence of nuclear interactions of colossal strength. The underlying 

picture of the model is naively simple. It classifies nuclear 

interactions according to the irreducible representations of the Lorentz 

group. Nuclear attraction is generated by a Lorentz scalar meson a 

through the interaction gs~~a, while the repulsion is given by a 

Lorentz vector meson w~ through an interaction gv~Y~~w~. 2 ) This 

distinction plays a fundamental role in the theory. It was shown by 

Schiff3) that this distinction between interactions is sufficient to 

obtain nuclear matter saturation without introducing hard core repulsion. 

In the relativistic field approach, nuclear matter saturation is a 

consequence of the apparent Lorentz covariance of the theory. Nuclear 

attraction is determined by a Lorentz scalar source term os and 
+ 

repulsion by a Lorentz vector source function (J,iov). 

Recently it was shown that a relativistic mean field model reproduces 

reasonably well the real part of the optical potential. 4) The ~ensity 

dependence of this potential has not been investigated. The purpose of 

this work is to make such an investigation in a variety of relativistic 

mean field models. We investigate the Walecka model, 2) the Boguta and 

Bodmer model, 5) and a recent model proposed by the author. 6) We show 

that all these models satisfy the Hugenholtz-van Hove theorem for an 
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interacting Fermi gas. 7l A comparison of the predicted single particle 

potentials at various nuclear densities is made with those of Friedman and 

Pandharipande, who use Fermi-hypernetted and single-operator-chain 

summation techniques with a realistic nuclear hamiltonian. 8) 

We assume that symmetric nuclear matter (N = Z) is described by the 

following Lagrangian 

where 

and 

£_ = -\j)(y _CJ_ + m )1/J - J.(Cla )
2 

- U(a) -J.F F 
~ax N 2 ax 4 ~v ~v 

~ ~ 

m2 
U(a) = ~2 + b 3 + c 4 

2 r -zra 

( 1 ) 

( 2a) 

(2b) 

(2c) 

(2d) 
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For rotationally and translationally invariant nuclear matter, the field 

equations in the mean field approximation are 

m2o + s bo 2 + co3 :::: -gsps 

-+ 
0 w :: 

2 m w v 0 
.::: gvpv 

( .-+ -+ -la•\7 + Sm*)</J-+ = k (E - g w )1/lk v 0 

The positive energy solutions of the Dirac equation are the usual plane 

wave solutions with a reduced mass m* = mN + gso. They are 

;.t x ~eik·X 
k2+m*2 + m1 

The source terms Ps and Pv are then given as a summation of nucleons 

up to the top of the Fermi sphere kF. 

4 t 3-
Ps - (2n) 3 d k</lit</Jit 

4 t d3k m* 
- (2n) 3 

~k2+m*2 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

(4a) 

(4b) 

(4c) 

(4d) 
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The single particle energy, as function of momentum k is given by 

E = g w + ~k 2 + m*2 
v 0 

and the Fermi energy is given by 

EF = gvwo +~k~ + m*2 

The energy density s is given by 

and the pressure for absolute zero temperature is 

p - 2 d (E:: ) 
- Pv dpv Pv 

( 5) 

( 6) 

( 7) 

( 8) 

Weisskopf showed, in an independent particle model, the equality of 

the Fermi energy and the energy per particle at saturation. 9) 

Subsequently, Hugenholtz and van Hove proved that for an interacting Fermi 

gas at zero absolute temperature the exact solution of the many body 

problem relates the Fermi energy, energy per particle, and the pressure 

through the relation 7) 

E = c:+P 
F P v 

At saturation, P = 0, and we recover the original Weisskopf relation EF 

Hugenholtz and van Hove used their results to check the 

validity of the approximations made in the Brueckner theory of nuclear 

matter. It was also used as criteria to check the validity of 

approximations made in the mass operatory theory. lO) We shall now show 

(9a) 

( 9b) 
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that the Hugenholtz-van Hove theorem holds in the self-consistent Hartree 

mean field approximation. The validity of the theorem in the Hartree 

approximation is surprising, since the original proof is for the exact 

solution of the many body problem. To establish the relationship of Eq. 

(9a-9b), we directly calculate the derivative of the energy density E with 

respect to the particle density Pv. One should note that the effective 

mass m* is density dependent. We have 

= E F 

( 10) 

The bracketed term in Eq. (10) vanishes identically on account of the 

field equation Eq. (3a). The validity of the Hugenholtz-van Hove theorem 

in a self-consistent mean field approximation suggests that the formal 

diagrammatic structure of the nonrelativistic many body theory of nuclear 

matter and that of the relativistic field approach are inherently quite 

different. The field equations Eq. (3a-3d) were derived in the Hartree 

approximation. Nonetheless, Eq. (6a) for the single particle energy in 

nuclear matter shows that in this Hartree approximation a quasi particle 

approximation is valid. The interactions have been absorbed in the 

effective mass m* and the field w
0

. This is not the case in the Hartree 

approximation in nonrelativistic theory, where the Fock term is mandatory. 

To test the content of the relativistic mean field theory, it is 

important to study the single particle energy as a function of energy 

and density. This directly reveals whether the shell potential in the 
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theory is a reasonable one. There have been a number of calculations for 

the real part of the optical potential in various many body theories, the 

most recent one being that of Friedman and Pandharipande using the 

variational method with Fermi-hypernetted and single operator-chain 

summation techniques. 8,lO) Thus, we have a good idea how a realistic 

nucleon-nucleon interaction projects itself onto the single particle 

properties in nuclear matter not only as a function of energy but also of 

density. To see how compatible the relativistic mean field approach is 

with refined many body calculations in the single particle sector, we 

study the single particle potential in three distinct relativistic mean 

field models. All of them saturate nuclear matter at a density of 

0.1625/fm3 with a binding energy per particle of -15.75 MeV. Let Cs = 

gs/m5 mN , Cv = gv/mv mN , b = b/(mNg~) and c = 

c/g~. The first model, considered by Boguta and Bodmer, 5) (called 

BB) is defined by taking Cs = 8, Cv = 2, b = 0.471, c = 9.1. This 

model has the feature that the nuclear surface energy is reasonable and 

the nuclear compressibility is K = 175 MeV. A very different model is 

obtained by taking C = 17.65 and C = 15.60 with b = c = 0. This s v 

model was considered by Walecka2) and we call it theW-model. It has 

many appealing phenomenological features, 11 ) but the nuclear surface 

energy is incorrect and the nuclear compressibility is K = 550 MeV. A 

third model was recently considered by the author and corresponds to Cs 
- -3 - -4 

= 15.6, C = 12.5, b = 2.08 x 10 , c = 3.6 x 10 • We call it the v 
B-model. It has a reasonable surface energy and K = 290 MeV. The three 

models differ in the predicted effective mass m* at saturation. BB-model 

has m*/mN = 0.935, W-model has m*/mN = 0.56, and B-model has m*/mN = 

0.69. The B-model is interesting in that it has a reasonable 
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compressibility and the effective mass corresponds most closely to the one 

required by the phenomenological analysis of Nobel 12 ) and theoretical 

calculations of Jeukenne et al. lO) 

The real part of the nonlocal optical potential is defined to be 

.rr-2 
E = ~k~ + m + ueff 

where 

U E J( E '·' ) 2 + m2 - m*2 eff = - ~ gvwo N 

In Fig. la, we show the comparison of the Friedman-Pandharipande (F-P) 

results at Pv = p
0 

= 0. 1625/fm3 with those of the relativistic mean 

field models. A compendium of Wood-Saxon well depths needed to fit the 

data is also shown. They are taken from Friedman and Pandharipande. 8) 

The W-model shows a significant deviation from the F-P results and from 

( 11 ) 

( 12) 

the Wood-Saxon potential fits. This was already noted by Jaminon, Mahaux 

and Rochus. 13 ) The BB-model is even worse here. The B-model agrees 

with F-P calculation for 0 ~e ~ 100 MeV. Fore< 0, theW-model agrees 

very well with F-P results, while the BB-model is very bad even here. The 

B-model shows about a 10% deviation. In Fig. lb we show Ueff for Pv = 

3/4 p
0

, 1/2 p
0 

and 1/4 p
0

, respectively, as a function of e = E - mN 

for all three models. 

The density dependence of Ueff for the W-model and the B-model is 

in reasonable agreement with the variational calculations even for low 

densities. This is surprising, since one would have expected that 

correlations would play a very important role here. 
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In Fig. 2a we show Ueff(e) for normal and compressed nuclear matter 

for the B-model and in Fig. 2b, the same is shown for theW-model. Both 

are significantly different from each other and from F-P results. In the 

W-model, Ueff(e), for pv = p
0

, vanishes at 130 MeV. For the B-model 

this occurs at 210 MeV. In the F-P calculation it vanishes at 300 MeV. 

In this work, we have studied the single particle properties in 

infinite nuclear matter as a function of both the density and energy in a 

variety of relativistic mean field models. Our calculation reveals that a 

phenomenologically reasonable model, such as the B-model, predicts the 

real part of the single particle potential in reasonable agreement with 

those calculated in a refined many body calculation of Friedman and 

Pandharipande using the variational method with Fermi-hypernetted and 

single-operator-chain summation techniques. This agreement is in density 

and energy. There does not appear to be any essential contradiction 

between the conventional many body approach and the relativistic mean 

field calculations. What is different is the interpretation. We have 

stressed the phenomenological aspects of the models. It was shown by Serr 

and Waleckall) that quantum corrections are indeed very important and 

change the properties of nuclear matter. But if one readjusts the 

coupling constants Cs and C , after higher order corrections were . v 
computed, to saturate nuclear matter at correct density and binding 

energy, the equation of state is only slightly modified. Thus a 

diagrammatic term-by-term comparison, though highly desirable for a 

fundamental theory of nuclear matter, can be misleading in a 

phenomenological approach. A phenomenological model of nuclear matter is 

justified only if it has 
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considerable predictive power. We have shown in this work and previous 

works that this is indeed the case. It means, as suggested by Boguta and 

Bodmer, that the complicated many body effects, though important and 

seemingly neglected in the relativistic mean field approximation, can 

indeed be absorbed into a few phenomenological constants. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract W-7405-ENG-48. 
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Figure Captions 

Fig. la. Real part of the optical potential Ueff for theW-model, the 

B-model, the BB model, compared with the results of 

Friedman-Pandharipande (F-P) variational calculation. The 

compendium of Wood-Saxon well depths is taken from F-P. 

Fig. lb. Density and energy dependence of the single particle potential 

in various mean field models (BB, B and W) compared with F-P 

variational calculations. 

Fig. 2a. B-model calculations of the single particle potential Ueff as 

a function of energy and various densities. The light line 

divides the kinematically allowed regions. 

Fig. 2b. W-model calculations of the single particle potential Ueff as 

a function of energy and various densities. The light line 

divides the kinematically allowed regions. 
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